Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.902
Filtrar
1.
Anticancer Drugs ; 35(3): 219-226, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948336

RESUMO

After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Sulfonamidas , Animais , Humanos , Camundongos , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Fator de Iniciação 4E em Eucariotos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
2.
Biomed Pharmacother ; 168: 115738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864894

RESUMO

Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.


Assuntos
Antineoplásicos , Antituberculosos , Reposicionamento de Medicamentos , Mycobacterium tuberculosis , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Tuberculose , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/metabolismo , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
JAMA ; 329(11): 918-932, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943212

RESUMO

Importance: Chronic lymphocytic leukemia (CLL), defined by a minimum of 5 × 109/L monoclonal B cells in the blood, affects more than 200 000 people and is associated with approximately 4410 deaths in the US annually. CLL is associated with an immunocompromised state and an increased rate of complications from infections. Observations: At the time of diagnosis, the median age of patients with CLL is 70 years, and an estimated 95% of patients have at least 1 medical comorbidity. Approximately 70% to 80% of patients with CLL are asymptomatic at the time of diagnosis, and one-third will never require treatment for CLL. Prognostic models have been developed to estimate the time to first treatment and the overall survival, but for patients who are asymptomatic, irrespective of disease risk category, clinical observation is the standard of care. Patients with symptomatic disease who have bulky or progressive lymphadenopathy or hepatosplenomegaly and those with a low neutrophil count, anemia, or thrombocytopenia and/or symptoms of fever, drenching night sweats, and weight loss (B symptoms) should be offered treatment. For these patients, first-line treatment consists of a regimen containing either a covalent Bruton tyrosine kinase (BTK) inhibitor (acalabrutinib, zanubrutinib, or ibrutinib) or a B-cell leukemia/lymphoma 2 (BCL2) inhibitor (venetoclax). There is no evidence that starting either class before the other improves outcomes. The covalent BTK inhibitors are typically used indefinitely. Survival rates are approximately 88% at 4 years for acalabrutinib, 94% at 2 years for zanubrutinib, and 78% at 7 years for ibrutinib. Venetoclax is prescribed in combination with obinutuzumab, a monoclonal anti-CD20 antibody, in first-line treatment for 1 year (overall survival, 82% at 5-year follow-up). A noncovalent BTK inhibitor, pitobrutinib, has shown an overall response rate of more than 70% after failure of covalent BTK inhibitors and venetoclax. Phosphoinositide 3'-kinase (PI3K) inhibitors (idelalisib and duvelisib) can be prescribed for disease that progresses with BTK inhibitors and venetoclax, but patients require close monitoring for adverse events such as autoimmune conditions and infections. In patients with multiple relapses, chimeric antigen receptor T-cell (CAR-T) therapy with lisocabtagene maraleucel was associated with a 45% complete response rate. The only potential cure for CLL is allogeneic hematopoietic cell transplant, which remains an option after use of targeted agents. Conclusions and Relevance: More than 200 000 people in the US are living with a CLL diagnosis, and CLL causes approximately 4410 deaths each year in the US. Approximately two-thirds of patients eventually need treatment. Highly effective novel targeted agents include BTK inhibitors such as acalabrutinib, zanubrutinib, ibrutinib, and pirtobrutinib or BCL2 inhibitors such as venetoclax.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Idoso , Humanos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/epidemiologia , Leucemia Linfocítica Crônica de Células B/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores de Antígenos Quiméricos , /uso terapêutico , Estados Unidos/epidemiologia
5.
J Biol Chem ; 299(2): 102875, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621626

RESUMO

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Assuntos
Antineoplásicos , Apoptose , Aurora Quinases , Proteína bcl-X , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Aurora Quinases/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Células HCT116 , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36048524

RESUMO

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Antineoplásicos/farmacologia , Apoptose , Proteína 11 Semelhante a Bcl-2 , Caspases , Linhagem Celular Tumoral , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Rituximab/farmacologia
7.
Blood Cancer J ; 12(8): 123, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999205

RESUMO

Targeted therapies against phosphatidylinositol 3-kinase (PI3K), Bruton's tyrosine kinase (BTK), and B-cell lymphoma-2 (BCL-2) are approved for chronic lymphocytic leukemia (CLL). Since approval of the first-in-class drugs, next-generation agents have become available and are continuously under development. While these therapies act on well-characterized molecular targets, this knowledge is only to some extent taken into consideration when determining their dose in phase I trials. For example, BTK occupancy has been assessed in dose-finding studies of various BTK inhibitors, but the minimum doses that result in full BTK occupancy were not determined. Although targeted agents have a different dose-response relationship than cytotoxic agents, which are more effective near the maximum tolerated dose, the traditional 3 + 3 toxicity-driven trial design remains heavily used in the era of targeted therapies. If pharmacodynamic biomarkers were more stringently used to guide dose selection, the recommended phase II dose would likely be lower as compared to the toxicity-driven selection. Reduced drug doses may lower toxicity, which in some cases is severe for these agents, and are supported by retrospective studies demonstrating non-inferior outcomes for patients with clinically indicated dose reductions. Here, we review strategies that were used for dose selection in phase I studies of currently approved and select investigational targeted therapies in CLL, and discuss how our initial clinical experience with targeted therapies have pointed to dose reductions, intermittent dosing, and drug combinations as strategies to overcome treatment intolerance and resistance.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/toxicidade , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Estudos Retrospectivos
8.
Aging (Albany NY) ; 14(16): 6381-6414, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951353

RESUMO

Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.


Assuntos
Senescência Celular , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
9.
J Transl Med ; 20(1): 299, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794605

RESUMO

BACKGROUND: Despite advances in targeted agent development, effective treatment of acute myeloid leukemia (AML) remains a major clinical challenge. The B-cell lymphoma-2 (BCL-2) inhibitor exhibited promising clinical activity in AML, acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL) treatment. APG-2575 is a novel BCL-2 selective inhibitor, which has demonstrated anti-tumor activity in hematologic malignancies. Homoharringtonine (HHT), an alkaloid, exhibited anti-AML activity. METHODS: The synergistic effects of APG-2575 and HHT were studied in AML cell lines and primary samples. MTS was used to measure the cell viability. Annexin V/propidium iodide staining was used to measure the apoptosis rate by flow cytometry. AML cell xenografted mouse models were established to evaluate the anti-leukemic effect of BCL-2 inhibitor, HHT and their combination in vivo. Western blot was used to determine the expression of related proteins. RESULTS: APG-2575 showed comparable anti-leukemic effect to the FDA-approved BCL-2 inhibitor ABT-199 in vitro and in vivo. Combined treatment of HHT with APG-2575 synergistically inhibited AML cell growth and engraftment. Mechanistically, HHT promoted degradation of myeloid cell leukemia-1 (MCL-1), which was reported to induce BCL-2 inhibitor resistant, through the PI3K/AKT/GSK3ß signaling pathway. CONCLUSION: Our results provide an effective AML treatment strategy through combination of APG-2575 and HHT, which is worthy of further clinical research.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Mepesuccinato de Omacetaxina , Leucemia Mieloide Aguda , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Mepesuccinato de Omacetaxina/administração & dosagem , Mepesuccinato de Omacetaxina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Med Chem ; 18(8): 903-914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264093

RESUMO

BACKGROUND: Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE: The aim of the study was to synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against the MCF-7 cell line. METHODS: Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having a polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the antiproliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure- activity relationship. RESULTS: Four compounds, namely 4e-h, exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G2/M phase and accumulation of cells in the pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited a potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION: Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Celecoxib , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Celecoxib/análogos & derivados , Celecoxib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Relação Estrutura-Atividade
12.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35185150

RESUMO

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas ras , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
13.
Cell Rep ; 38(1): 110197, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986346

RESUMO

AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Células THP-1 , Células U937 , Adulto Jovem
14.
J Enzyme Inhib Med Chem ; 37(1): 542-553, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34986722

RESUMO

Roburic acid (ROB) is a naturally occurred tetracyclic triterpenoid, and the anticancer activity of this compound has not been reported. Docetaxel (DOC) is the first-line chemotherapeutic agent for advanced stage prostate cancer but toxic side effects and drug resistance limit its clinical success. In this study, the potential synergistic anticancer effect and the underlying mechanisms of ROB in combination with DOC on prostate cancer were investigated. The results showed that ROB and DOC in combination synergistically inhibited the growth of prostate cancer cells. The combination also strongly induced apoptosis, and suppressed cell migration, invasion and sphere formation. Mechanistic study showed that the combined effects of ROB and DOC on prostate cancer cells were associated with inhibition of NF-κB activation, down regulation of Bcl-2 and up regulation of Bax. Knockdown of NF-κB by small interfering RNA (siRNA) significantly decreased the combined effect of ROB and DOC. Moreover, we found that esomeprazole (ESOM), a proton pump inhibitor (PPI), strongly enhanced the effectiveness of ROB and DOC on prostate cancer cells in acidic culture medium. Since acidic micro environment is known to impair the efficacy of current anticancer therapies, ESOM combined with ROB and DOC may be an effective approach for improving the treatment of prostate cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Docetaxel , Neoplasias da Próstata , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/química , Docetaxel/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Esomeprazol/química , Esomeprazol/farmacologia , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Exp Hematol ; 105: 39-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767916

RESUMO

Acute myeloid leukemia (AML) remains a clinical challenge. Venetoclax is an effective Bcl-2 selective inhibitor approved by the U.S. Food and Drug Administration (FDA) for treatment of AML in patients who are 75 years and older or who have comorbidities. However, resistance to venetoclax limits its clinical efficacy. Mcl-1 has been identified as one determinant of resistance to venetoclax treatment. In this study, we investigate the Mcl-1 inhibitor S63845 in combination with venetoclax in AML cells. We found that S63845 synergizes with venetoclax in AML cell lines and primary patient samples. Bak/Bax double knockdown and treatment with the pan-caspase inhibitor Z-VAD-FMK revealed that the combination induces intrinsic apoptosis in AML cells. Inhibition of Mcl-1 using another Mcl-1 selective inhibitor, AZD5991, also synergistically enhanced apoptosis induced by venetoclax in a caspase-dependent manner. Importantly, S63845 in combination with venetoclax can effectively combat AML cells with acquired resistance to the standard chemotherapy drug cytarabine. In light of these facts, the combined inhibition of Mcl-1 and Bcl-2 shows promise against AML cells, including relapse/refractory AML.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
16.
Cancer Sci ; 113(2): 597-608, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34808021

RESUMO

Several lines of research suggest that Bcl-xL-mediated anti-apoptotic effects may contribute to the pathogenesis of myeloproliferative neoplasms driven by JAK2V617F and serve as therapeutic target. Here, we used a knock-in JAK2V617F mouse model and confirmed that Bcl-xL was overexpressed in erythroid progenitors. The myeloproliferative neoplasm (MPN)-induced phenotype in the peripheral blood by conditional knock-in of JAK2V617F was abrogated by conditional knockout of Bcl2l1, which presented anemia and thrombocytopenia independently of JAK2 mutation status. Mx1-Cre Jak2V617W/VF /Bcl2l1f/f mice presented persistent splenomegaly as a result of extramedullary hematopoiesis and pro-apoptotic stimuli in terminally differentiated erythroid progenitors. The pan-BH3 mimetic inhibitor obatoclax showed superior cytotoxicity in JAK2V617F cell models, and reduced clonogenic capacity in ex vivo assay using Vav-Cre Jak2V617F bone marrow cells. Both ruxolitinib and obatoclax significantly reduced spleen weights in a murine Jak2V617F MPN model but did not show additive effect. The tumor burden reduction was observed with either ruxolitinib or obatoclax in terminal differentiation stage neoplastic cells but not in myeloid-erythroid precursors. Therefore, disrupting the BCL2 balance is not sufficient to treat MPN at the stem cell level, but it is certainly an additional option for controlling the critical myeloid expansion of the disease.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células Precursoras Eritroides/patologia , Humanos , Indóis/uso terapêutico , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Nitrilas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
17.
J Clin Oncol ; 40(1): 63-71, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793256

RESUMO

PURPOSE: BCL2 is overexpressed and confers prosurvival signaling in malignant lymphoplasmacytic cells in Waldenström macroglobulinemia (WM). Venetoclax is a potent BCL2 antagonist and triggers in vitro apoptosis of WM cells. The activity of venetoclax in WM remains to be clarified. PATIENTS AND METHODS: We performed a multicenter, prospective phase II study of venetoclax in patients with previously treated WM (NCT02677324). Venetoclax was dose-escalated from 200 mg to a maximum dose of 800 mg daily for up to 2 years. RESULTS: Thirty-two patients were evaluable, including 16 previously exposed to Bruton tyrosine kinase inhibitors (BTKis). All patients were MYD88 L265P-mutated, and 17 carried CXCR4 mutations. The median time to minor and major responses was 1.9 and 5.1 months, respectively. Previous exposure to BTKis was associated with a longer time to response (4.5 v 1.4 months; P < .001). The overall, major, and very good partial response rates were 84%, 81%, and 19%, respectively. The major response rate was lower in those with refractory versus relapsed disease (50% v 95%; P = .007). The median follow-up time was 33 months, and the median progression-free survival was 30 months. CXCR4 mutations did not affect treatment response or progression-free survival. The only recurring grade ≥ 3 treatment-related adverse event was neutropenia (n = 14; 45%), including one episode of febrile neutropenia. Laboratory tumor lysis without clinical sequelae occurred in one patient. No deaths have occurred. CONCLUSION: Venetoclax is safe and highly active in patients with previously treated WM, including those who previously received BTKis. CXCR4 mutation status did not affect treatment response.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sulfonamidas/uso terapêutico , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Biomarcadores Tumorais/genética , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fator 88 de Diferenciação Mieloide/genética , Intervalo Livre de Progressão , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores CXCR4/genética , Sulfonamidas/efeitos adversos , Fatores de Tempo , Estados Unidos , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/mortalidade
18.
J Cell Biochem ; 123(2): 390-405, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791695

RESUMO

Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure-activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U-87 cell line was used to prepare an adequate three-dimensional QSAR (3D-QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2 . Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl-2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D-QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL-XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D-QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.


Assuntos
Sistemas de Liberação de Medicamentos , Flavonoides/química , Glioblastoma/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Flavonoides/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/química , Relação Quantitativa Estrutura-Atividade
19.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
20.
Leukemia ; 36(1): 197-209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304248

RESUMO

Standard chemotherapies for diffuse large B-cell lymphoma (DLBCL), based on the induction of exogenous DNA damage and oxidative stress, are often less effective in the presence of increased MYC and BCL-2 levels, especially in the case of double hit (DH) lymphomas harboring rearrangements of the MYC and BCL-2 oncogenes, which enrich for a patient's population characterized by refractoriness to anthracycline-based chemotherapy. Here we hypothesized that adaptive mechanisms to MYC-induced replicative and oxidative stress, consisting in DNA damage response (DDR) activation and BCL-2 overexpression, could represent the biologic basis of the poor prognosis and chemoresistance observed in MYC/BCL-2-positive lymphoma. We first integrated targeted gene expression profiling (T-GEP), fluorescence in situ hybridization (FISH) analysis, and characterization of replicative and oxidative stress biomarkers in two independent DLBCL cohorts. The presence of oxidative DNA damage biomarkers identified a poor prognosis double expresser (DE)-DLBCL subset, characterized by relatively higher BCL-2 gene expression levels and enrichment for DH lymphomas. Based on these findings, we tested therapeutic strategies based on combined DDR and BCL-2 inhibition, confirming efficacy and synergistic interactions in in vitro and in vivo DH-DLBCL models. These data provide the rationale for precision-therapy strategies based on combined DDR and BCL-2 inhibition in DH or DE-DLBCL.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Enzimas Reparadoras do DNA/antagonistas & inibidores , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Ureia/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Ureia/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...